Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Life Sci ; 345: 122606, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38574884

ABSTRACT

AIMS: Alzheimer's disease (AD), the most common neurodegenerative disorder associated with aging, is characterized by amyloid-ß (Aß) plaques in the hippocampus. Ergosterol, a mushroom sterol, exhibits neuroprotective activities; however, the underlying mechanisms of ergosterol in promoting neurite outgrowth and preventing Aß-associated aging have never been investigated. We aim to determine the beneficial activities of ergosterol in neuronal cells and Caenorhabditis elegans (C. elegans). MATERIALS AND METHODS: The neuritogenesis and molecular mechanisms of ergosterol were investigated in wild-type and Aß precursor protein (APP)-overexpressing Neuro2a cells. The anti-amyloidosis properties of ergosterol were determined by evaluating in vitro Aß production and the potential inhibition of Aß-producing enzymes. Additionally, AD-associated transgenic C. elegans was utilized to investigate the in vivo attenuating effects of ergosterol. KEY FINDINGS: Ergosterol promoted neurite outgrowth in Neuro2a cells through the upregulation of the transmembrane protein Teneurin-4 (Ten-4) mRNA and protein expressions, phosphorylation of the extracellular signal-regulated kinases (ERKs), activity of cAMP response element (CRE), and growth-associated protein-43 (GAP-43). Furthermore, ergosterol enhanced neurite outgrowth in transgenic Neuro2A cells overexpressing either the wild-type APP (Neuro2a-APPwt) or the Swedish mutant APP (Neuro2a-APPswe) through the Ten-4/ERK/CREB/GAP-43 signaling pathway. Interestingly, ergosterol inhibited Aß synthesis in Neuro2a-APPwt cells. In silico analysis indicated that ergosterol can interact with the catalytic sites of ß- and γ-secretases. In Aß-overexpressing C. elegans, ergosterol decreased Aß accumulation, increased chemotaxis behavior, and prolonged lifespan. SIGNIFICANCE: Ergosterol is a potential candidate compound that might benefit AD patients by promoting neurite outgrowth, inhibiting Aß synthesis, and enhancing longevity.


Subject(s)
Alzheimer Disease , Neuroblastoma , Animals , Humans , Caenorhabditis elegans/metabolism , Longevity , GAP-43 Protein , Amyloid beta-Peptides/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals, Genetically Modified/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Amyloid Precursor Protein Secretases/metabolism , Neuronal Outgrowth
2.
Sci Rep ; 14(1): 8179, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589471

ABSTRACT

Breast cancer has been reported to correlate with the infiltration of tumor-associated macrophages (TAMs) or M2-like macrophages in tumor microenvironment (TME) that could promote breast cancer progression. In contrast, M1-like macrophages displayed anti-tumor activity toward cancer. This study was focused on Auricularia polytricha (AP), a cloud ear mushroom, which has been reported for anti-tumor activity and immunomodulation. AP extracts were screened on differentiated THP-1 macrophages (M0). Results demonstrated that water extract (APW) and crude polysaccharides (APW-CP) could upregulate M1-related genes and cytokines production (IL-6, IL-1 ß and TNF-α) significantly. Moreover, APW and APW-CP showed a high expression of CD86 (M1 marker) compared to M0. The NF-κB signaling pathway is crucial for pro-inflammatory gene regulation. The APW and APW-CP treatment showed the induction of the NF-κB pathway in a dose-dependent manner, which related to the ß-glucan content in the extracts. Furthermore, APW-CP polarized macrophages were investigated for anti-tumor activity on human breast cancer cells (MCF-7 and MDA-MB-231). Results showed that APW-CP could inhibit the invasion of breast cancer cells and induce apoptosis. Therefore, M1 macrophages polarized by APW-CP showed anti-tumor activity against the breast cancer cells and ß-glucan may be the potential M1-phenotype inducer.


Subject(s)
Auricularia , Breast Neoplasms , beta-Glucans , Humans , Female , Breast Neoplasms/pathology , NF-kappa B/metabolism , Macrophages/metabolism , Polysaccharides/pharmacology , Polysaccharides/metabolism , beta-Glucans/pharmacology , beta-Glucans/metabolism , Tumor Microenvironment
3.
Foods ; 12(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37444267

ABSTRACT

Ergosterol is an important sterol commonly found in edible mushrooms, and it has important nutritional value and pharmacological activity. Ergosterol is a provitamin. It has been well established that edible mushrooms are an excellent food source of vitamin D2 because ergosterol is a precursor that is converted to vitamin D2 under ultraviolet radiation. The pharmacological effects of ergosterol, which include antimicrobial, antioxidant, antimicrobial, anticancer, antidiabetic, anti-neurodegenerative, and other activities, have also been reported. This review aims to provide an overview of the available evidence regarding the pharmacological effects of ergosterol and its underlying mechanisms of action. Their potential benefits and applications are also discussed.

4.
Molecules ; 28(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37049819

ABSTRACT

Sustained inflammatory responses have been implicated in various neurodegenerative diseases (NDDs). Cleistocalyx nervosum var. paniala (CN), an indigenous berry, has been reported to exhibit several health-beneficial properties. However, investigation of CN seeds is still limited. The objective of this study was to evaluate the protective effects of ethanolic seed extract (CNSE) and mechanisms in BV-2 mouse microglial cells using an inflammatory stimulus, TNF-α. Using LC-MS, ferulic acid, aurentiacin, brassitin, ellagic acid, and alpinetin were found in CNSE. Firstly, we examined molecular docking to elucidate its bioactive components on inflammation-related mechanisms. The results revealed that alpinetin, aurentiacin, and ellagic acid inhibited the NF-κB activation and iNOS function, while alpinetin and aurentiacin only suppressed the COX-2 function. Our cell-based investigation exhibited that cells pretreated with CNSE (5, 10, and 25 µg/mL) reduced the number of spindle cells, which was highly observed in TNF-α treatment (10 ng/mL). CNSE also obstructed TNF-α, IL-1ß, and IL-6 mRNA levels and repressed the TNF-α and IL-6 releases in a culture medium of BV-2 cells. Remarkably, CNSE decreased the phosphorylated forms of ERK, p38MAPK, p65, and IκB-α related to the inhibition of NF-κB binding activity. CNSE obviously induced HO-1 protein expression. Our findings suggest that CNSE offers good potential for preventing inflammatory-related NDDs.


Subject(s)
NF-kappa B , Syzygium , Mice , Animals , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Microglia , Syzygium/chemistry , Interleukin-6/metabolism , Neuroinflammatory Diseases , Fruit/metabolism , Ellagic Acid/pharmacology , Molecular Docking Simulation , Cell Line , Inflammation/drug therapy , Inflammation/metabolism , Seeds/metabolism , Lipopolysaccharides/pharmacology
5.
Phytomedicine ; 113: 154728, 2023 May.
Article in English | MEDLINE | ID: mdl-36898255

ABSTRACT

BACKGROUND: Glutamate, an excitatory neurotransmitter, was elevated in the brain of neurodegenerative disease (ND) patients. The excessive glutamate induces Ca2+ influx and reactive oxygen species (ROS) production which exacerbates mitochondrial function, leading to mitophagy aberration, and hyperactivates Cdk5/p35/p25 signaling leading to neurotoxicity in ND. Stigmasterol, a phytosterol, has been reported for its neuroprotective effects; however, the underlying mechanism of stigmasterol on restoring glutamate-induced neurotoxicity is not fully investigated. PURPOSE: We investigated the effect of stigmasterol, a compound isolated from Azadirachta indica (AI) flowers, on ameliorating glutamate-induced neuronal apoptosis in the HT-22 cells. STUDY DESIGN: To further understand the underlying molecular mechanisms of stigmasterol, we investigated the effect of stigmasterol on Cdk5 expression, which was aberrantly expressed in glutamate-treated cells. Cell viability, Western blot analysis, and immunofluorescence are employed. RESULTS: Stigmasterol significantly inhibited glutamate-induced neuronal cell death via attenuating ROS production, recovering mitochondrial membrane depolarization, and ameliorating mitophagy aberration by decreasing mitochondria/lysosome fusion and the ratio of LC3-II/LC3-I. In addition, stigmasterol treatment downregulated glutamate-induced Cdk5, p35, and p25 expression via enhancement of Cdk5 degradation and Akt phosphorylation. Although stigmasterol demonstrated neuroprotective effects on inhibiting glutamate-induced neurotoxicity, the efficiency of stigmasterol is limited due to its poor water solubility. We conjugated stigmasterol to soluble soybean polysaccharides with chitosan nanoparticles to overcome the limitations. We found that the encapsulated stigmasterol increased water solubility and enhanced the protective effect on attenuating the Cdk5/p35/p25 signaling pathway compared with free stigmasterol. CONCLUSION: Our findings illustrate the neuroprotective effect and the improved utility of stigmasterol in inhibiting glutamate-induced neurotoxicity.


Subject(s)
Azadirachta , Neurodegenerative Diseases , Neuroprotective Agents , Humans , Down-Regulation , Stigmasterol/pharmacology , Stigmasterol/metabolism , Glutamic Acid/toxicity , Glutamic Acid/metabolism , Neurodegenerative Diseases/metabolism , Neuroprotective Agents/pharmacology , Reactive Oxygen Species/metabolism , Neurons , Signal Transduction , Phosphorylation , tau Proteins/metabolism , Flowers/metabolism , Water
6.
Front Cell Dev Biol ; 11: 1105692, 2023.
Article in English | MEDLINE | ID: mdl-36760362

ABSTRACT

Cutaneous wound healing is a biological process that occurs upon skin injury and involves different mechanisms to repair tissue damage. Improper healing or prolonged curation period of wound lesions may induce unpleasant complications. Cold atmospheric microwave plasma (CAMP) is an upcoming medical therapeutic option for skin infection and wound treatment. However, the molecular mechanisms of CAMP-mediated canine wound healing are not well characterized. Wound-healing activity was examined to elucidate the biological effects and molecular mechanisms of CAMP. Canine keratinocytes (CPEKs) were treated using CAMP, and their wound-healing activities were evaluated. The molecular mechanisms of that effect were examined, based on RNA-Seq analysis data, and verified using immunoblotting and polymerase chain reaction. It was found that the CAMP-treated cells exhibited a significant increase in cell migration evaluated by scratch assay in human keratinocytes (HaCaT) and canine keratinocytes (CPEK). Additionally, CAMP-treated CPEK cells showed a significant positive effect on cell invasion. The RNA-Seq data revealed that CAMP alters different genes and pathways in CPEK cells. Gene expression involved in the cell cycle, cell proliferation, angiogenesis, cell adhesion, and wound healing was upregulated in CAMP-treated cells compared with gas-activated media used as a control. The Hippo pathway was also analyzed, and the protein and mRNA levels of YAP were significantly increased in CAMP-treated cells. CAMP-treated CPEK cells indicated the downregulation of E-cadherin and upregulation of vimentin, Snail, and Slug at transcription and translation levels, contributing to a favorable effect on cell migration. Our findings suggested that CAMP treatment provided beneficial effects on the curative wound process through the induction of genes involved in wound healing, promotion of EMT, and increase in the molecular targets in the Hippo signaling pathway.

7.
Sci Rep ; 13(1): 3089, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36813838

ABSTRACT

Hair loss or alopecia is an unpleasant symptom that exacerbates an individual's self-esteem and requires appropriate treatment. The Wnt/ß-catenin signaling is a central pathway that promotes dermal papilla induction and keratinocyte proliferation during hair follicle renewal. GSK-3ß inactivated by its upstream Akt and ubiquitin-specific protease 47 (USP47) has been shown to inhibit ß-catenin degradation. The cold atmospheric microwave plasma (CAMP) is microwave energy enriched with mixtures of radicals. CAMP has been reported to have antibacterial and antifungal activities with wound healing activity against skin infection; however, the effect of CAMP on hair loss treatment has not been reported. We aimed to investigate the effect of CAMP on promoting hair renewal in vitro and to elucidate the molecular mechanism, targeting ß-catenin signaling and YAP/TAZ, the co-activators in the Hippo pathway, in human dermal papilla cells (hDPCs). We also evaluated plasma effects on the interaction between hDPCs and HaCaT keratinocytes. The hDPCs were treated with plasma-activating media (PAM) or gas-activating media (GAM). The biological outcomes were determined by MTT assay, qRT-PCR, western blot analysis, immunoprecipitation, and immunofluorescence. We found that ß-catenin signaling and YAP/TAZ were significantly increased in PAM-treated hDPCs. PAM treatment also induced ß-catenin translocation and inhibited ß-catenin ubiquitination by activating Akt/GSK-3ß signaling and upregulating USP47 expression. In addition, hDPCs were more aggregated with keratinocytes in PAM-treated cells compared with control. HaCaT cells cultured in a conditioned medium derived from PAM-treated hDPCs exhibited an enhancing effect on activating YAP/TAZ and ß-catenin signaling. These findings suggested that CAMP may be a new therapeutic alternative for alopecic treatment.


Subject(s)
Hair Follicle , Microwaves , beta Catenin , Humans , Alopecia/metabolism , beta Catenin/metabolism , Cell Proliferation , Cells, Cultured , Glycogen Synthase Kinase 3 beta/metabolism , Hair Follicle/metabolism , Hair Follicle/radiation effects , Proto-Oncogene Proteins c-akt/metabolism , Wnt Signaling Pathway
8.
Heliyon ; 8(11): e11869, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36468101

ABSTRACT

Neuroinflammation is an essential contributor to multiple neurodegenerative disorders. Cleistocalyx nervosum var. paniala, an edible berry, has been reported to exhibit a neuroprotective effect. However, only limited research is available on this fruit seed, which is classified as agricultural food waste. We therefore focused on the anti-neuroinflammatory effects and mechanisms of C. nervosum var. paniala seed extract (CNSE) on lipopolysaccharide (LPS)-induced inflammatory response in BV-2 mouse microglial cells. HPLC analysis showed that CNSE consists of resveratrol (RESV). For cell-based studies, BV-2 cells were pre-treated with CNSE or RESV, followed by LPS. We found that CNSE and RESV inhibited LPS-induced inflammation in a dose-dependent manner. CNSE and RESV inhibited gene expression and activity of iNOS, leading to a decrease in nitric oxide production. Both CNSE and RESV suppressed the gene expression and the activities of TNF-α, IL-1ß, and IL-6. Our results revealed that LPS stimulated the protein levels of MAPKs (JNK, ERK1/2, and p38), while pretreatment of cells with CNSE or RESV attenuated these proteins expressions. CNSE also suppressed NF-κB activation. These results suggest that CNSE and RESV can inhibit LPS-induced inflammatory response through MAPKs/NF-κB pathways in BV-2 cells. Taken together, CNSE have potential as a functional anti-neuroinflammatory agent.

9.
Nutrients ; 14(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36079924

ABSTRACT

Hyperglycemia is one of the important causes of neurodegenerative disorders and aging. Aquilaria crassna Pierre ex Lec (AC) has been widely used to relieve various health ailments. However, the neuroprotective and anti-aging effects against high glucose induction have not been investigated. This study aimed to investigate the effects of hexane extract of AC leaves (ACH) in vitro using human neuroblastoma SH-SY5Y cells and in vivo using nematode Caenorhabditis elegans. SH-SY5Y cells and C. elegans were pre-exposed with high glucose, followed by ACH treatment. To investigate neuroprotective activities, neurite outgrowth and cell cycle progression were determined in SH-SY5Y cells. In addition, C. elegans was used to determine ACH effects on antioxidant activity, longevity, and healthspan. In addition, ACH phytochemicals were analyzed and the possible active compounds were identified using a molecular docking study. ACH exerted neuroprotective effects by inducing neurite outgrowth via upregulating growth-associated protein 43 and teneurin-4 expression and normalizing cell cycle progression through the regulation of cyclin D1 and SIRT1 expression. Furthermore, ACH prolonged lifespan, improved body size, body length, and brood size, and reduced intracellular ROS accumulation in high glucose-induced C. elegans via the activation of gene expression in the DAF-16/FoxO pathway. Finally, phytochemicals of ACH were analyzed and revealed that ß-sitosterol and stigmasterol were the possible active constituents in inhibiting insulin-like growth factor 1 receptor (IGFR). The results of this study establish ACH as an alternative medicine to defend against high glucose effects on neurotoxicity and aging.


Subject(s)
Caenorhabditis elegans , Plant Extracts , Thymelaeaceae , Animals , Caenorhabditis elegans/drug effects , Cell Line, Tumor , Forkhead Transcription Factors/metabolism , Glucose/adverse effects , Humans , Longevity , Molecular Docking Simulation , Plant Extracts/chemistry , Thymelaeaceae/chemistry
10.
Biomed Pharmacother ; 154: 113596, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36030584

ABSTRACT

Neuroinflammation is a brain pathology that involves the expression of high levels of pro-inflammatory mediators, including tumor necrosis factor-alpha (TNF-α). An excessive TNF-α expression could result in neuronal cell death and subsequently lead to neurodegeneration. Auricularia polytricha (AP; an edible mushroom) has been reported as a rich source of ergosterol with several medicinal benefits. The current study reports on the neuroprotective effects of AP extracts and ergosterol against the TNF-α-induced HT-22 hippocampal cell injury. The hexane extract of AP (APH) demonstrated a neuroprotective effect against the TNF-α-induced HT-22 cell toxicity, taking place through the activation of the antioxidant pathway. Ergosterol, a major component of APH, could attenuate the toxicity of TNF-α on HT-22 cells, by increasing the expression of a major antioxidant enzyme (superoxide dismutase-1) and by facilitating the scavenging of reactive oxygen species through antioxidant signaling. Moreover, an antibody array was performed to screen the possible molecular targets of ergosterol in HT-22 cells exposed to TNF-α. Based on the antibody array, the phospho-Akt was activated in the presence of ergosterol, and this finding was also supported by Western blotting analysis. Furthermore, ergosterol inhibited the transcriptional expressions of the glutamate ionotropic receptor N-methyl-D-aspartate (NMDA) type subunit 2B gene (Grin2b) through an early growth response-1 (EGR-1) overexpression in TNF-α-treated HT-22 cells. Our findings suggest that a novel therapeutic effect of AP and ergosterol against neuroinflammation, that it is mediated by an NMDA gene modulation occurring through the overexpression of the EGR-1 transcription factor.


Subject(s)
Neuroprotective Agents , Antioxidants/pharmacology , Ergosterol/pharmacology , Glutamic Acid , Hippocampus , N-Methylaspartate/pharmacology , Neuroprotective Agents/pharmacology , Tumor Necrosis Factor-alpha/metabolism
11.
Food Res Int ; 157: 111433, 2022 07.
Article in English | MEDLINE | ID: mdl-35761673

ABSTRACT

Bisphenol A (BPA) has been reported to have neurotoxic properties that may increase the risk of neurodegenerative diseases by inducing neuroinflammation. Auricularia polytricha (AP) is an edible mushroom with several medicinal properties. Herein, the anti-neuroinflammatory effects of AP extracts against BPA-induced inflammation of BV2 microglial cells were investigated. Hexane (APH) and ethanol (APE) extracts of AP inhibited BPA-induced neuroinflammation in BV2 microglia by reducing microglial activation and the expression of pro-inflammatory cytokines. These anti-inflammatory effects were regulated by the NF-κB signaling pathway. In addition, APH and APE exhibited antioxidative effects by increasing the activity of the SOD-1 enzyme and restoring the accumulation of reactive oxygen species (ROS) in BPA-induced BV2 cells. Moreover, the conditioned medium prepared using BPA-induced BV2 cells demonstrated that the presence of APH or APE could attenuate ROS production in HT-22 cells. Further, ergosterol was isolated from APE and also showed anti-inflammatory and antioxidative activities. In conclusion, AP extracts and ergosterol attenuated neuroinflammation against BPA induction in BV2 microglial cells through the NF-κB signaling pathway.


Subject(s)
Agaricales , Microglia , Agaricales/metabolism , Anti-Inflammatory Agents/metabolism , Auricularia , Benzhydryl Compounds , Ergosterol/metabolism , Ergosterol/pharmacology , Inflammation/metabolism , Microglia/metabolism , NF-kappa B/metabolism , Phenols , Reactive Oxygen Species/metabolism
12.
Plants (Basel) ; 12(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36616194

ABSTRACT

The skin is the largest organ that performs a variety of the body's essential functions. Impairment of skin structure and functions during the aging process might severely impact our health and well-being. Extensive evidence suggests that reactive oxygen species play a fundamental role in skin aging through the activation of the related degradative enzymes. Here, the 16 Thai medicinal plant species were screened for their potential anti-skin aging properties. All extracts were investigated for total phenolic and flavonoid contents, antioxidant, anti-elastase, and anti-tyrosinase activities, as well as the binding ability of compounds with target enzymes by molecular docking. Among all the plants screened, the leaves of A. occidentale and G. zeylanicum exhibited strong antioxidants and inhibition against elastase and tyrosinase. Other potential plants include S. alata leaf and A. catechu fruit, with relatively high anti-elastase and anti-tyrosinase activities, respectively. These results are also consistent with docking studies of compounds derived from these plants. The inhibitory actions were found to be more highly positively correlated with phenolics than flavonoids. Taken together, our findings reveal some Thai plants, along with candidate compounds as natural sources of antioxidants and potent inhibitors of elastase and tyrosinase, could be developed as promising and effective agents for skin aging therapy.

13.
Antioxidants (Basel) ; 10(11)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34829549

ABSTRACT

Oxidative stress plays a crucial role in neurodegeneration. Therefore, reducing oxidative stress in the brain is an important strategy to prevent neurodegenerative disorders. Thunbergia laurifolia (Rang-jued) is well known as an herbal tea in Thailand. Here, we aimed to determine the protective effects of T. laurifolia leaf extract (TLE) on glutamate-induced oxidative stress toxicity and mitophagy-mediated cell death in mouse hippocampal cells (HT-22). Our results reveal that TLE possesses a high level of bioactive antioxidants by LC-MS technique. We found that the pre-treatment of cells with TLE prevented glutamate-induced neuronal death in a concentration-dependent manner. TLE reduced the intracellular ROS and maintained the mitochondrial membrane potential caused by glutamate. Moreover, TLE upregulated the gene expression of antioxidant enzymes (SOD1, SOD2, CAT, and GPx). Interestingly, glutamate also induced the activation of the mitophagy process. However, TLE could reverse this activity by inhibiting autophagic protein (LC3B-II/LC3B-I) activation and increasing a specific mitochondrial protein (TOM20). Our results suggest that excessive glutamate can cause neuronal death through mitophagy-mediated cell death signaling in HT-22 cells. Our findings indicate that TLE protects cells from neuronal death by stimulating the endogenous antioxidant enzymes and inhibiting glutamate-induced oxidative toxicity via the mitophagy-autophagy pathway. TLE might have potential as an alternative or therapeutic approach in neurodegenerative diseases.

14.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34832897

ABSTRACT

Human immunodeficiency virus type-1 (HIV-1) infection causes acquired immunodeficiency syndrome (AIDS). Currently, several anti-retroviral drugs are available, but adverse effects of these drugs have been reported. Herein, we focused on the anti-HIV-1 activity of Curcuma aeruginosa Roxb. (CA) extracted by hexane (CA-H), ethyl acetate (CA-EA), and methanol (CA-M). The in vitro HIV-1 protease (PR) and HIV-1 reverse transcriptase (RT) inhibitory activities of CA extracts were screened. CA-M potentially inhibited HIV-1 PR (82.44%) comparable to Pepstatin A (81.48%), followed by CA-EA (67.05%) and CA-H (47.6%), respectively. All extracts exhibited moderate inhibition of HIV-1 RT (64.97 to 76.93%). Besides, phytochemical constituents of CA extracts were identified by GC-MS and UPLC-HRMS. Fatty acids, amino acids, and terpenoids were the major compounds found in the extracts. Furthermore, drug-likeness parameters and the ability of CA-identified compounds on blocking of the HIV-1 PR and RT active sites were in silico investigated. Dihydroergocornine, 3ß,6α,7α-trihydroxy-5ß-cholan-24-oic acid, and 6ß,11ß,16α,17α,21-Pentahydroxypregna-1,4-diene-3,20-dione-16,17-acetonide showed strong binding affinities at the active residues of both HIV-1 PR and RT. Moreover, antioxidant activity of CA extracts was determined. CA-EA exhibited the highest antioxidant activity, which positively related to the amount of total phenolic content. This study provided beneficial data for anti-HIV-1 drug discovery from CA extracts.

15.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34681226

ABSTRACT

Oxidative stress is associated with several diseases, particularly neurodegenerative diseases, commonly found in the elderly. The attenuation of oxidative status is one of the alternatives for neuroprotection and anti-aging. Auricularia polytricha (AP), an edible mushroom, contains many therapeutic properties, including antioxidant properties. Herein, we report the effects of AP extracts on antioxidant, neuroprotective, and anti-aging activities. The neuroprotective effect of AP extracts against glutamate-induced HT-22 neuronal damage was determined by evaluating the cytotoxicity, intracellular reactive oxygen species (ROS) accumulation, and expression of antioxidant enzyme genes. Lifespan and healthspan assays were performed to examine the effects of AP extracts from Caenorhabditis elegans. We found that ethanolic extract (APE) attenuated glutamate-induced HT-22 cytotoxicity and increased the expression of antioxidant enzyme genes. Moreover, APE promoted in the longevity and health of the C. elegans. Chemical analysis of the extracts revealed that APE contains the highest quantity of flavonoids and a reasonable percentage of phenols. The lipophilic compounds in APE were identified by gas chromatography/mass spectrometry (GC/MS), revealing that APE mainly contains linoleic acid. Interestingly, linoleic acid suppressed neuronal toxicity and ROS accumulation from glutamate induction. These results indicate that AP could be an exciting natural source that may potentially serves as neuroprotective and anti-aging agents.

16.
Pharmaceuticals (Basel) ; 14(9)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34577601

ABSTRACT

Alzheimer's disease (AD) is implicated in the imbalance of several proteins, including Amyloid-ß (Aß), amyloid precursor protein (APP), and BACE1. APP overexpression interferes with neurite outgrowth, while BACE1 plays a role in Aß generation. Medicinal herbs with effects on neurite outgrowth stimulation and BACE1 inhibition may benefit AD. This study aimed to investigate the neurite outgrowth stimulatory effect, along with BACE1 inhibition of Caesalpinia mimosoides (CM), using wild-type (Neuro2a) and APP (Swedish mutant)-overexpressing (Neuro2a/APPSwe) neurons. The methanol extract of CM leaves stimulated neurite outgrowth in wild-type and APP-overexpressing cells. After exposure to the extract, the mRNA expression of the neurite outgrowth activation genes growth-associated protein-43 (GAP-43) and teneurin-4 (Ten-4) was increased in both Neuro2a and Neuro2a/APPSwe cells, while the mRNA expression of neurite outgrowth negative regulators Nogo receptor (NgR) and Lingo-1 was reduced. Additionally, the extract suppressed BACE1 activity in the APP-overexpressing neurons. Virtual screening demonstrated that quercetin-3'-glucuronide, quercetin-3-O-glucoside, clausarinol, and theogallin were possible inhibitors of BACE1. ADMET was analyzed to predict drug-likeness properties of CM-constituents. These results suggest that CM extract promotes neurite outgrowth and inhibits BACE1 activity in APP-overexpressing neurons. Thus, CM may serve as a source of drugs for AD treatment. Additional studies for full identification of bioactive constituents and to confirm the neuritogenesis in vivo are needed for translation into clinic of the present findings.

17.
Food Funct ; 12(21): 10563-10570, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34571527

ABSTRACT

Auricularia polytricha (AP), an edible mushroom, is continuously being studied due to the medicinal properties. In this study, AP crude extracts from three sequential extraction, starting from hexane (APH), ethanol (APE) and water (APW), were examined for their anti-inflammatory activity and lipid accumulation property in macrophages. APE treatment was found to increase lipid droplet accumulation in both RAW264.7 and LPS-stimulated RAW264.7 cells in a dose dependent manner. Furthermore, nitric oxide production upon LPS stimulation was suppressed on APE pre-treatment. LC-MS analysis was performed to identify the potential bioactive compounds in APE. The PPARγ agonist, 15-Deoxy-Δ12,14-prostaglandin J2-2-glycerol ester (15d-PGJ2-G), was uniquely presented in APE, which was previously described to bind with PPARγ and induces lipid uptake via the upregulation of Cd36. We found that pre-treatment with APE also showed an increase in Cd36 mRNA in RAW264.7 cells, indicating that 15d-PGJ2-G is the potential active compound found in AP. In conclusion, APE exhibited the induction of lipid uptake via CD36, resulting in lipid accumulation.


Subject(s)
Auricularia/metabolism , Inflammation/prevention & control , Lipid Metabolism , Macrophages/metabolism , Plant Extracts/metabolism , Animals , Cells, Cultured , Chromatography, Liquid , Complex Mixtures , Ethanol/metabolism , Mass Spectrometry , Mice , RAW 264.7 Cells
18.
J Tradit Complement Med ; 11(2): 144-157, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33520683

ABSTRACT

BACKGROUND AND AIM: The novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is now become a worldwide pandemic bringing over 71 million confirmed cases, while the specific drugs and vaccines approved for this disease are still limited regarding their effectiveness and adverse events. Since virus incidences are still on rise, infectivity and mortality may also rise in the near future, natural products are highly considered to be valuable sources for the discovery of new antiviral drugs against SARS-CoV-2. This present review aims to comprehensively summarize the up-to-date scientific literatures on biological activities of plant- and mushroom-derived compounds relevant to mechanistic targets involved in SARS-CoV-2 infection and inflammatory-associated pathogenesis, including viral entry, replication and release, and the renin-angiotensin-aldosterone system (RAAS). EXPERIMENTAL PROCEDURE: Data were retrieved from a literature search available on PubMed, Scopus and Google Scholar databases and collected until the end of May 2020. The findings from in vitro cell and non-cell based studies were considered, while the results of in silico studies were excluded. RESULTS AND CONCLUSION: Based on the previous findings in SARS-CoV studies, except in silico molecular docking analysis, herein, we provide a total of 150 natural compounds as potential candidates for development of new anti-COVID-19 drugs with higher efficacy and lower toxicity than the existing therapeutic agents. Several natural compounds have showed their promising actions on multiple therapeutic targets, which should be further explored. Among them, quercetin, one of the most abundant of plant flavonoids, is proposed as a lead candidate with its ability on the virus side to inhibit SARS-CoV spike protein-angiotensin-converting enzyme 2 (ACE2) interaction, viral protease and helicase activities, as well as on the host cell side to inhibit ACE activity and increase intracellular zinc level.

19.
J Tradit Complement Med ; 11(2): 158-172, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33520685

ABSTRACT

BACKGROUND AND AIM: Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now become the world pandemic. There is a race to develop suitable drugs and vaccines for the disease. The anti-HIV protease drugs are currently repurposed for the potential treatment of COVID-19. The drugs were primarily screened against the SARS-CoV-2 main protease. With an urgent need for safe and effective drugs to treat the virus, we have explored natural products isolated from edible and medicinal mushrooms that have been reported to possess anti-HIV protease. EXPERIMENTAL PROCEDURES: We have examined 36 compounds for their potential to be SARS-CoV-2 main protease inhibitors using molecular docking study. Moreover, drug-likeness properties including absorption, distribution, metabolism, excretion and toxicity were evaluated by in silico ADMET analysis. RESULTS: Our AutoDock study showed that 25 of 36 candidate compounds have the potential to inhibit the main viral protease based on their binding affinity against the enzyme's active site when compared to the standard drugs. Interestingly, ADMET analysis and toxicity prediction revealed that 6 out of 25 compounds are the best drug-like property candidates, including colossolactone VIII, colossolactone E, colossolactone G, ergosterol, heliantriol F and velutin. CONCLUSION: Our study highlights the potential of existing mushroom-derived natural compounds for further investigation and possibly can be used to fight against SARS-CoV-2 infection. TAXONOMY CLASSIFICATION BY EVISE: Disease, Infectious Disease, Respiratory System Disease, Covid-19, Traditional Medicine, Traditional Herbal Medicine, Phamaceutical Analysis.

20.
J Tradit Complement Med ; 10(4): 396-404, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32695657

ABSTRACT

BACKGROUND AND AIM: Lignosus rhinocerus (LR) is an edible mushroom with a variety of medicinal properties such as neurostimulation, immunomodulation, anti-inflammation, anti-oxidation, anti-proliferation, anti-diabetes and especially antiviral activity. Human immunodeficiency virus type-1 (HIV-1) needs the HIV-1 protease (PR) and reverse transcriptase (RT) for its replication. Therefore, both HIV-1 PR and RT are important targets for antiretroviral drug development. EXPERIMENTAL PROCEDURE: The crude hexane (LRH), ethanol (LRE) and water (LRW) extracts of LR were in vitro screened for inhibitory activity against HIV-1 PR and RT, then anti-HIV-1 activity on the infected MOLT-4 cells were determined. Chemical constituents of the extracts were identified by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography (LC)-MS. The identified compounds were in silico analysed for drug-likeness property and molecular modelling. RESULTS AND CONCLUSION: According to our screening assays, LRE and LRW significantly inhibited both enzymes (25-55%), while LRH suppressed only the HIV-1 PR activity (88.97%). At 0.5 mg/ml of LRW showed significant inhibition of HIV-1 induced syncytial formation and p24 production in the infected MOLT-4 cells. Investigation of chemical analysis revealed that major groups of identified constituents found in the extracts were fatty acids, peptides and terpenoids. In silico analysis showed that heliantriol F and 6 alpha-fluoroprogesterone displayed great binding energies with HIV-1 PR and HIV-1 RT, respectively. These findings suggest that LR could be a potential source of compounds to inhibit HIV-1 PR and/or RT activities in vitro. Furthermore, our results provide beneficial data for the development of novel HIV-1 PR and RT inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...